動作環境
動作確認できた環境です。必ずしもこれでなければいけないということはありません。Windows 11
Windows 11 CUDA 11.7 Python 3.10
WSL2
Ubuntu 22.04 on WSL2 CUDA 11.8 Python 3.10
環境構築
CUDA 11.8の場合
pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 --index-url https://download.pytorch.org/whl/cu118 pip install diffusers[torch] pip install transformers omegaconf
Pythonスクリプト
import torch from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler, AutoencoderKL from diffusers.utils import export_to_gif # Load the motion adapter adapter = MotionAdapter.from_pretrained("animatediff-motion-adapter-v1-5-2") #adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2") # load SD 1.5 based finetuned model model_id = "model/yabalMixTrue25D_v4_ema" pipe = AnimateDiffPipeline.from_pretrained( model_id, motion_adapter=adapter, vae=AutoencoderKL.from_single_file("vae/vae-ft-mse-840000-ema-pruned.safetensors") ) pipe.scheduler = DDIMScheduler.from_pretrained( model_id, subfolder="scheduler", beta_schedule="linear", clip_sample=False, timestep_spacing="linspace", steps_offset=1 ) pipe.load_lora_weights("lora/more_details.safetensors") # enable memory savings pipe.enable_vae_slicing() pipe.enable_model_cpu_offload() output = pipe( prompt="a girl, dancing, blue denim, white plain t-shirt, best quality, extremely detailed", negative_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", num_frames=16, guidance_scale=8.5, num_inference_steps=40, generator=torch.manual_seed(1000000000), ) frames = output.frames[0] export_to_gif(frames, "animation.gif")
結果
結果はGoogle Bloggerに載せています。support-touchsp.blogspot.com