PC環境
Ubuntu 24.04 on WSL2 (Windows 11)
CUDA 12.1
Python 3.12
Python環境構築
pip install torch==2.3.1+cu121 --index-url https://download.pytorch.org/whl/cu121
pip install transformers accelerate bitsandbytes gradio
モデルの量子化
4bit量子化を行いました。
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(
"calm3-22b-chat",
quantization_config=quantization_config
)
model.save_pretrained("calm3-22b-chat-4bit")
Gradioで実行
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
system_prompt_text = "あなたは親切なAIアシスタントです。"
init = {
"role": "system",
"content": system_prompt_text,
}
model = AutoModelForCausalLM.from_pretrained(
"calm3-22b-chat-4bit",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("calm3-22b-chat")
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
def call_llm(
message: str,
history: list[dict],
max_tokens: int,
temperature: float,
top_p: float,
):
history_openai_format = []
if len(history) == 0:
history_openai_format.append(init)
history_openai_format.append({"role": "user", "content": message})
else:
history_openai_format.append(init)
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
history_openai_format,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
generation_kwargs = dict(
inputs=input_ids,
streamer=streamer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
yield generated_text
demo = gr.ChatInterface(
fn=call_llm,
title="CALM3-22B-Chat-4bit",
stop_btn="Stop Generation",
cache_examples=False,
multimodal=False,
additional_inputs_accordion=gr.Accordion(
label="Parameters", open=False, render=False
),
additional_inputs=[
gr.Slider(
minimum=1,
maximum=4096,
step=1,
value=1024,
label="Max tokens",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=1.0,
label="Top-p",
visible=True,
render=False,
),
],
)
demo.launch(share=False)
実際の画面
VRAM使用量
14.4GBのVRAMを使用していました。